Efficient automatic OCR word validation using word partial format derivation and language model
نویسندگان
چکیده
In this paper we present an OCR validation module, implemented for the System for Preservation of Electronic Resources (SPER) developed at the U.S. National Library of Medicine.1 The module detects and corrects suspicious words in the OCR output of scanned textual documents through a procedure of deriving partial formats for each suspicious word, retrieving candidate words by partial-match search from lexicons, and comparing the joint probabilities of N-gram and OCR edit transformation corresponding to the candidates. The partial format derivation, based on OCR error analysis, efficiently and accurately generates candidate words from lexicons represented by ternary search trees. In our test case comprising a historic medico-legal document collection, this OCR validation module yielded the correct words with 87% accuracy and reduced the overall OCR word errors by around 60%.
منابع مشابه
Word Segmentation for Urdu OCR System
This paper presents a technique for Word segmentation for the Urdu OCR system. Word segmentation or word tokenization is a preliminary task for understanding the meanings of sentences in Urdu language processing. Several techniques are available for word segmentation in other languages but not much work has been done for word segmentation of Urdu Optical Character Recognition (OCR) System. A me...
متن کاملA Statistical Approach to Automatic OCR Error Correction in Context
This paper describes an automatic, context-sensitive, word-error correction system based on statistical language modeling (SLM) as applied to optical character recognition (OCR) postprocessing. The system exploits information from multiple sources, including letter n-grams, character confusion probabilities, and word-bigram probabilities. Letter n-grams are used to index the words in the lexico...
متن کاملA Generative Probabilistic OCR Model for NLP Applications
In this paper, we introduce a generative probabilistic optical character recognition (OCR) model that describes an end-to-end process in the noisy channel framework, progressing from generation of true text through its transformation into the noisy output of an OCR system. The model is designed for use in error correction, with a focus on post-processing the output of black-box OCR systems in o...
متن کاملInformation retrieval for OCR documents: a content-based probabilistic correction model
The difficulty with information retrieval for OCR documents lies in the fact that OCR documents comprise of a significant amount of erroneous words and unfortunately most information retrieval techniques rely heavily on word matching between documents and queries. In this paper, we propose a general content-based correction model that can work on top of an existing OCR correction tool to “boost...
متن کاملA Content-based Probabilistic Correction Model for OCR Document Retrieval
The difficulty with information retrieval for OCR documents lies in the fact that OCR documents comprise of a significant amount of erroneous words and unfortunately most information retrieval techniques rely heavily on word matching between documents and queries. In this paper, we propose a general content-based correction model that can work on top of an existing OCR correction tool to “boost...
متن کامل